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AN EXPERIMENTAL  INVESTIGATION OF TWO LARGE ANNULAR DIFFUSERS 
WITH SWIRLPJG AND DISTORTED INFLOW 

William T. Eckert,* James P. Johnston,? Tad D. Simons,? 
Kenneth w. Mort,$  and V. Robert Page$ 

Two annular diffusers downstream of  a nacelle-mounted fan were tested for aerodynamic performance, measured in 
terms of  two static  pressure  recovery  parameters (one near the diffuser exit plane  and one about three diameters downstream in 
the settling duct)  in  the presence of several inflow conditions. The two diffusers each  had  an inlet diameter of  1.84 m, an  area 
ratio of 2.3, and  an equivalent cone angle of 11.5°, but were distinguished by centerbodies o f  different lengths. The dependence 
of diffuser performance on various combinations of swirling,  radially distorted, andlor azimuthally distorted inflow was exam- 
ined.  Swirling flow and distortions in the axial velocity profile in the annulus  upstream of the diffuser inlet were  caused by the 
intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions 
or defects were  generated by the addition of four artificial  devices  (screens and fences). 

Pressure  recovery  data indicated  beneficial effects  of both radial distortion (for a limited range of distortion levels) and 
inflow swirl.  Small amounts of azimuthal distortion created by the artificial  devices  produced only small effects on diffuser per- 
formance. A large artificial distortion device was  required to produce  enough  azimuthal flow distortion to significantly degrade 
the diffuser static  pressure  recovery. 

Because of the  complexity of the flow  field, the 
performance  characteristics of diffusers with  nonuni- 
form inflow conditions are understood qualitatively 
in some cases but elude accurate,  theoretical analysis. 
More study is needed,  and careful  testing of dif- 
fusers with various inflow conditions (especially 
swirl) can advance the  state  of  the  art (refs. 1  and 2). 
Recent experimental  studies  at Ames Research  Center 
have provided additional  data on the  effects  of vari- 
ous inflow  characteristics on  the  aerodynamic per- 
formance of two particular  diffuser  geometries. 

The recent NASA effort directed toward repower- 
ing and  modifying the Ames 40- by  80-Foot Wind 
Tunnel (refs. 3  and 4) has encompassed many areas of 
experimental research, development,  and optimiza- 
tion. In one  study,  the performance of  the drive fan 
rotor/stator system and of the diffuser components 
of the fan nacelle were examined on a 0.15-scale 
model  of  the drive system  proposed for  the modified 
facility.  The  tests were conducted over the  projected 
drive-system operating  envelope and in the presence 
of various inflow distortions.  The  aerodynamic  and 
acoustic results of the fan system portion of the 
study are summarized  in  references 5 and 6 ,  
respectively. 

*Aeromechanics  Laboratory,  AVRADCOM  Research  and 

TMechanical  Engineering  Dept.,  Stanford  University, 

?NASA  Ames  Research  Center,  Moffett  Field,  Calif. 

Technology  Laboratories,  Moffett  Field,  Calif. 94035. 

Stanford,  Calif. 94305. 

94035, 

This report presents the diffuser  characteristics 
resulting from  the inflow patterns imposed  during the 
rotor/stator testing. The  fan nacelle diffuser was 
investigated because of  its large contribution  to  the 
losses in the  wind-tunnel circuit.  The effects of swirl 
and  distortion on diffuser  performance were the pri- 
mary area of  concern in  this study. 

The following  diffuser  characteristics  are  presented 
for a range of entering flow patterns (radial variations 
of swirl angle and velocity): ( 1 )  the longitudinal vari- 
ation of wall static pressure coefficient, (2) the distri- 
butions of static pressure coefficient and local veloc- 
ity near the  exit  plane,  and (3) the diffuser perfor- 
mance results expressed as the  static pressure 
recovery coefficient,  both near the  exit plane  and 
near the  end of the downstream settling  duct. 

Data were collected at Reynolds numbers ranging 
from 0.7X lo6 to 2.6X lo6. (Reynolds numbers were 
based on  the 0.463-m  (1.52-ft) annulus gap and on 
the mean flow  speed at  the diffuser  inlet.)  The enter- 
ing  flows (as measured at  the survey station) included 
swirl angles between 0" and 14",  and effective  area 
fractions  that varied from case to case between 0.78 
and 0.96. The  azimuthal  distortion, measured in 
terms of the  ratio of local-radial-average and cross- 
sectional  mean  velocities, ranged from  about 0.78 to 
1.12. 

The  authors acknowledge the valuable assistance 
of Mr. Daniel J. Clasen of ARO, Inc., Ames Division, 
for his careful supervision of  the  model  operation  and 
data  acquisition. 
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diffuser  flow  cross-section area,  m2 (ft’) 

diffuser  area ratio, - A2 
AI 

surface static pressure coefficient refer- 
enced to average static pressure near dif- 
fuser inlet  and  made dimensionless  by 
mean dynamic pressure near  diffuser inlet, 
P - ‘ref 

q1rn 

inside diameter  of  annulus shell,  m (ft) 

element of diffuser  cross-section area,  m2 
(ft’ ) 

effective area fraction at the survey station 
and  azimuth (a measure of flow  radial 

VU uniformity), - 
‘max 

average value of E for all survey azimuths 
at specified conditions 

local vertical height  of diffuser  shell, 
m (ft) 

centerline length  of diffuser duct, m (ft) 

rate of mass flow through  the  duct,  per- 
cent of design value 

local  surface static pressure, N/m’ 
(Ib/ft’) 

dynamic pressure of axial flow, - 
N/m’ (lb/ft’) 

maximum  radius of diffuser centerbody, 

PV 
2 ’  

m (ft) 

radial distance from  centerline of annular 
duct,  fraction of outer shell radius 

local radius of diffuser centerbody, m (ft) 

local  radius of corner fillet in diffuser, 
m (ft) 

V 

VM 

WS 

X 

P 

- 
42 

6 
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e 

E 

P 

Subscripts 

a 

e 

i, 1-D 

axial flow velocity,  m/sec  (ft/sec) 

mean  velocity in cross section  near dif- 
fuser exit plane,  m/sec (ftlsec) 

local width of diffuser  shell,  m (ft) 

centerline distance downstream  from  dif- 
fuser entrance, m (ft) 

swirl angle of flow  upstream of diffuser 
entrance, measured from  duct  centerline, 
deg 

average value of 1.3, for all survey azimuths 
at specified conditions, deg 

uncertainty in  magnitude of parameter 

percent 
.._ 

azimuthal angle locating the wall static 
pressure taps in the local cross section 
0.3 m (1 .O ft) downstream of  the diffuser 
exit, measured from vertical duct  center- 
line (zero angle straight up), positive 
clockwise looking  upstream, deg 

fan stagger angle, angle between  duct 
centerline  and blade chord line  (compli- 
ment of blade angle), measured at 
314 radius, deg 

airflow density,  kg/m3 (slugs/ft3) 

mass-weighted average value of param- 
eter  at survey azimuth (see Glossary) 

area-weighted average value of parameter 
for  conditions measured 0.3 m (1.0 ft) 
downstream  of diffuser exit 

ideal,  one-dimensional flow 
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mean value of  parameter  from  continuity 
considerations (see Glossary) 

maximum value of  parameter 

reference value of  parameter,  taken near 
diffuser inlet 

average condition measured near  down- 
stream end  of  'settling  duct,  approxi- 
mately  three  hydraulic diameters down- 
stream  of diffuser exit 

theoretical  maximum 

condition  at diffuser inlet plane 

condition  at diffuser exit plane 

diffusion angle or equivalent cone angle, 
deg 

MODEL CONFIGURATIONS 

LUL Long (1.17 Ds) upstream  contraction sec- 
tion, Uniform annulus  centerbody  diam- 
eter,  and Long  diffuser centerbody 

LVL Long (1.17 D,) upstream  contraction sec- 
tion, Varying annulus  centerbody  diam- 
eter, and  Long  diffuser centerbody 

LVS Long (1.17 Ds) upstream  contraction sec- 
tion, Varying annulus  centerbody  diam- 
eter, and Short diffuser centerbody 

SUL - Short (0.67 0,) upstream  contraction sec- 
tion, Uniform annulus  centerbody  diam- 
eter,  and  Long diffuser centerbody 

GLOSSARY 

average: mass-weighted average value of  parameter 
calculated from  the survey measurements at 
local azimuth 

azimuthal  distortion: variation of local azimuth aver- 
age velocity from mean  velocity at  duct  station 
(quantified by VJV,) 

equivalent cone angle: included wall angle of a  right 
cone  with same inlet  and  exit areas, 

first stall limit: condition vaguely dividing the regimes 
of  steady,  uniform, unstalled  flow and  unsteady, 
nonuniform flow with significant transitory 
stall (see ref. 1) 

hydraulic  diameter: outer perimeter 
4 (flow area) 

mean: overall mean value at  local cross section as cal- 
culated  by  continuity considerations from flow 
conditions  at  inlet of test apparatus (m meter- 
ing station) 

peak  recovery: maximurn static pressure recovery 
achieved as area ratio is vaned at a constant 
ratio  of axial length to inlet  width (shown as 
the Cp* line in fig. 15 of ref. 1); generally 
obtained  when flow separation (stall) starts to 
occur as area ratio is increased 

radial distortion: deviation  from  rectilinear unifor- 
mity of the radial profde of velocity at a given 

static pressure recovery: rise in static pressure pro- 
duced  by  diffusion process,P2 - PI , or 
PsD - P I ,  N/m2 (lb/ft*) 

station: longitudinal  position  in duct 

MODEL AND APPARATUS 

The overall configuration of the  test  apparatus is 
shown in figure 1. Figures 2 through 6 and  tables 1 
through 5 present additional details of  the  geometry 
and  of  the  instrumentation  locations. 

Upstream Ducting 

The  ducting  upstream  of  the diffuser,  as shown in 
figure l(c), consists of three  parts:  (1)  an  inlet bell- 
mouth  and  constant-area, square inlet  duct, (2) a 
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contraction with  shape transition  from  the  inlet  duct 
to  the  annulus,  and (3) an  annular  duct  containing 
the  fan  rotorlstator  system, drive motor,  centerbody, 
and  support  struts.  The basic (i,e., “reference”) aero- 
dynamic design parameters of the drive fan  system 
are  summarized in table 1. 

Figure 2(a) shows  a portion  of  the  inlet  duct  and 
the  contraction sections. Two  contraction  duct 
lengths were tested:  the  short  contraction was 
0.67  throat  diameters in length  and  the longer one 
was 1.1 7 diameters  long;  both  had a contraction  ratio 
of 1.68  and provided  a  linear  variation of fillet  radius 
from  the square cross section of the  inlet  duct  to  the 
circular cross section. Figure 2(a) also shows the 
placement of the various  distortion-generating devices 
described further in figure 2(b). 

Figures 3(a) and 4(a) present  the details of  the 
nacelle annulus, including the survey location where 
swirl and velocity distributions  and area-fraction data 
were measured.  Figures 3(b)  and 4(b) show  the  duct 
cross section at  the survey location  and  the  four azi- 
muth positions (top,  starboard,  bottom, and port) 
around  the  duct where the radial  surveys were made. 
Additional geometry, including  details of  the  annulus 
and  motor  support  struts, are given in table 2. 

Diffusers 

Two  annular diffuser duct geometries were 
obtained  by using the futed outer shell with  two dif- 
ferent  centerbodies. 

The annular diffusers were preceded upstream  by 
the  constant-diameter  annulus which had a length of 
1.7 outer diameters. The diffuser shell cross-sectional 
shape  changed uniformly (i.e., a  linear  variation of 
corner fillet  radius) over the  length  from circular at 
the  inlet t o  rectangular at  the  exit.  The  height-to- 
width  ratio  at  the  exit was about 1 . l .  (The geometry 
is shown in side view and in cross section in figure 5 
with  additional details  in table 3.) 

The  two diffuser centerbodies were different  pri- 
marily in their  length (i.e., fineness  ratio). Both cen- 
terbodies  (with  coordinates given in  table 4) tapered 
gradually from  maximum  diameter  at  the diffuser 
inlet to terminate  at  zero  diameter.  The long center- 
body  extended to  just  downstream  of  the diffuser 
exit, while the  short tail cone  extended  for only 
about  70% of the diffuser length.  The area distribu- 
tions  through  the  two diffusers  are given in table 5 .  
The overall equivalent cone angle of 11.5”  and 

the overall area ratio  of 2.3 were the same for  both 
diffuser  systems. 

Downstream Ducting 

Downstream of  the diffuser exit was a constant- 
area, rectangular  “tail pipe” or settling  duct (fig. I(c)) 
with a length  of  approximately  three  hydraulic diam- 
eters of the diffuser exit.  For all configurations, the 
flow rate  through  the  model was controlled  by a pair 
of common-hinged doors forming  a throttle wedge 
(shown in fig. l(b)) at  the  end  of  the  settling  duct in 
the final exit  from  the  test rig. 

Instrumentation 

All calculations and results were based on tempera- 
ture  and pressure data,  taken as required. Tempera- 
ture  measurements were made  with five thermocou- 
ple probes  located at  the test rig inlet face and three 
more probes midway through  the  constant-diameter 
annulus. The  inlet  thermocouple  probes were located 
one  at  the  center  of each  lip of the  bellmouth and 
one  on  the flow  centerline.  The annulus  thermocou- 
ple probes were located  at  the 3/4 radius position, 
approximately evenly distributed  around  the cross 
section  at a station  just upstream of the  motor  sup- 
port  struts. 

The  pertinent pressure-measuring locations are 
shown in figures l(c), 3, 4, and 5(a). There were five 
pressure data systems  used: (1) surface pressure ori- 
fices around  the  inlet  duct measured the mass flow, 
2,  through  the calibrated bellmouth (fig. l(c)); 
(2) a traversing, six-port survey probe (fig. 6), used at 
any of four  azimuth positions (figs. 3(b)  and 4(b)) in 
the  annulus  upstream of the diffuser inlet, measured 
swirl- and velocity-related parameters; (3) surface 
pressure orifices on  the  centerbodies and diffuser 
shell walls (shown schematically in fig. l(c) and  in 
detail in figs. 3(a), 4(a), and 5(a)) measured static 
pressure coefficient  information; (4) total pressure 
rakes and  static pressure surface  orifices just  down- 
stream of the diffuser exit (located as shown in 
figs. l(c)  and 5(a)) were distributed  to give equal-area 
measurements of  the pressures and velocities near the 
diffuser exit plane; and ( 5 )  surface pressure orifices 
on  the walls of the  settling  duct measured  additional 
static pressure recovery information. 



REDUCTION OF DATA 

Data  Sources and Handling 

The diffuser performance parameters were deter- 
mined from  different sources in a  variety of ways. 
The inflow swirl angle and velocity distributions were 
determined  from  the survey probe  data  taken  at sev- 
eral discrete points across the annulus. The  dynamic 
pressures and velocities at  the diffuser inlet were 
mean values based on measurements taken  near  the 
calibrated bellmouth  inlet,  adjusted  for area dif- 
ferences. The discrete  local and mass-weighted- 
average velocities at  the survey station were com- 
puted  from  total  and  static pressure measurements. 
Static pressure coefficients, based on  data  from wall 
static pressure taps, were referenced to  the  static 
pressure at  the diffuser inlet (an interpolated value 
because no measurement was taken  at  exactly  that 
location), and were made dimensionless by  the mean 
dynamic pressure entering  the  diffuser. 

Calibration and Accuracies 

The flow through  the  inlet  bellmouth was cali- 
brated  on a 0.305 m (1.0 ft) square scale model.  The 
calibration was conducted using a precalibrated,  stan- 
dard ASME long-radius flow nozzle.  The  calibrated 
mass flow of  the inlet was based on  the  static pressure 
drop  at  the  throat and the  temperature  at  the 
entrance. (All data  presented  here were taken above 
the critical  Reynolds  number of the  bellmouth.) 

The survey probe (fig. 6) was calibrated in the 
Ames 7- by  10-Foot Wind Tunnel  (Number 1).  The 
pressures were calibrated in terms of dimensionless 
pressure differences  measured by  the  six-port, direc- 
tional  Pitot-static  probe.  Total  and  static pressures 
were calibrated against a known  standard.  The flow 
angle was determined  from an inclinometer  for 
upright and inverted probe calibration  runs. During 
testing operation, measured quantities were adjusted, 
using the calibrations, for angularity effects to give 
corrected values. (The radial flow angles were cali- 
brated and  measured but were small and are not 
reported.) 

All pressure readings used to  determine  the calibra- 
tions  and  the various  flow parameters were accurate 
to about k0.75 mm (k0.03 in.) of vertical water 
column  height.  The survey probe installation errors 
did not exceed + O S ” .  The effects of calibration, 
installation, and other  errors  and  uncertainties  for 

the  annulus flow data,  determined  by  the  methods 
of reference 7, are  presented in figure 7(a) as func- 
tions  of swirl angle. Figure 7(b)  shows the uncer- 
tainties in the results of the  static pressure coeffi- 
cients  and  the diffuser exhaust velocity distributions. 

The position of  the survey probe was known to 
within about 53 mm (0.1 in.) or  about *0.3% of the 
shell radius (6 R/RS = 0.003). The  other pressure 
port  locations were accurate to about +6 mm 
(k0.3 in.). 

Temperature measurements were made within 
+l.loC  (k2”F)  and  the fan  speed  settings were accu- 
rate to  about 2 rpm,  or less than 0.2% of the  nominal 
(design) value. The mass-flow rate was accurate to 
within 1% of the design value (see table 1). 

TEST  PROCEDURE 

The  1.83-meter-diameter, low-speed fan used for 
the  studies of references 5 and 6 was used as the gen- 
erating device for  the diffuser  inflow conditions  for 
this study. The  fan  system design conditions used as 
the “reference”  here and in references 5 and 6 are 
those given in table 1.  (These conditions were derived 
from the  300-knot maximum flow-speed design point 
for  the high-speed test section of the modified Ames 
40- by  80-Foot Wind Tunnel (refs. 3 and 4).) 

The swirl imparted to  the flow by  the  rotor/stator 
system varied with mass flow as did the radial uni- 
formity of the velocity  profile. (The swirl and uni- 
formity effects were coupled  and  changed together as 
a result of fan loading.) 

The mass flow, which controlled  the swirl and uni- 
formity, was in turn  controlled  by  the  throttle  at  the 
duct  exit. Az1 data were taken  at  the same fan rota- 
tional  speed.  Additional distortion was provided by 
the installation of upstream boundary-layer  thicken- 
ing devices. 

The various condition parameters (mass-flow rate, 
inflow swirl angle, profie  uniformity,  and blockage) 
were held constant while data were taken  by  the 
survey probe  at 10 to 20 discrete  radial locations in  a 
single azimuthal  quadrant  downstream of the  stators. 
The survey apparatus was then moved to  another azi- 
muth position and  the process repeated. 

The model was configured in  four selected combi- 
nations of six components. (The  abbreviations used 
for  the  four configurations  (LUL,  LVL, LVS, and 
SUL)  tested are defrned at  the  end of the  Notation 
section.) The  components were a  long or  short con- 
traction  section, a uniform  or varying annulus  center- 
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body  diameter,  and a long  or short diffuser center- 
body.  Each configuration was studied over a range of 
test  conditions (fan stagger angle and/or  amount  of 
artificial  distortion).  Table 6 shows the  configurations 
and  test  conditions used. 

Most data were taken with the  long  contraction 
and  long diffuser centerbody installed. However, 
these two  components were changed for some tests to 
determine  the  effects  of  upstream  duct geometry and 
of a  second  diffuser geometry. (When the diffuser 
centerbody was changed, the  upstream  annulus 
centerbody geometry was also  changed (see fig. 4(a)).) 

Two  duct geometries were used as baselines for  the 
various comparisons made.  The  configurations  with 
the long contraction (fig. 2(a)), uniform  annulus  cen- 
terbody (fig. 3(a)), and  long diffuser centerbody 
(fig. 5), designated  LUL,  were used as the reference 
for comparisons  showing the  effects  of  contraction 
length and  azimuthal  distortion.  They were also used 
to  show general diffuser performance  trends  and  char- 
acteristics  in the presence of swirling and/or radially 
distorted inflow.  The same configuration,  but  with 
the varying-diameter annulus  centerbody (fig. 4(a)) 
and  designated LVL,  was used as the baseline for 
showing the  effects  of diffuser centerbody length. 

The  inflow  Reynolds numbers (based on annulus 
gap and mean  flow  speed at  the diffuser inlet) varied 
from 0.7X lo6 to 2.6X l o 6 ,  and swirl angles in the 
annulus ranged between 0" and  14". As mass flow 
rate  changed, the  uniformity  of  the velocity profile, 
measured by effective  area fraction, varied (not  inde- 
pendent of swirl angle) from  about 0.78 to  about 
0.96 because of the change in fan  loading. The  arti- 
ficially generated  inflow distortion,  vaned  from  none 
(Va/Vm = 1.0) to significant (Va/Vm = 0.78 and 
1.12)  amounts. 

The  studies considered  only steady-state diffuser 
performance  characteristics. No attempt was made  to 
determine  the  effects of gusts or oscillatory flows. 

RESULTS 

LUL configuration are presented graphically in fig- 
ures 8 and 9. The averaged inflow parameters based 
on these and similar additional  data are  summarized 
in figure 10.  The  corresponding  duct wall static pres- 
sure  distributions  are  plotted in figure 11.  The cross- 
sectional  distributions  near  the diffuser exit plane of 
exhaust velocity and pressure coefficient are shown in 
figures 1 2 .  and  13, respectively. The diffuser  per- 
formance  parameters are  summarized in figure 14. 
Data  summaries for  the same configuration,  but  with 
the  short  contraction (configuration SUL), are pre- 
sented in figure 15  for  the  annulus flow and in 
figure 16  for  the diffuser performance. 

The  annulus flow patterns generated by  the  four 
distortion devices operating on the same LUL  duct 
geometry are shown  in figures 17  and  18.  The result- 
ing longitudinal  distributions of wall pressure are 
given in figure 19.  The  related diffuser exhaust veloc- 
ity  distributions  and pressure  recovery data are 
plotted in figures 20  and  21, respectively. 

Configurations With Varying  Annulus Centerbody 
Diameter 

The basic annulus flow data  for  the LVL configu- 
ration are shown in figures 22  and  23  and  are sum- 
marized in figure 24.  The  longitudinal  distributions 
of wall pressure are given in figure 25. Figures 26 
and  27  show  the cross-sectional distributions near the 
diffuser exit plane of  the velocity and  the wall pres- 
sure.  The  diffuser  performance parameters  are  sum- 
marized in figure 28. 

Summaries of  the  annulus flow data  for  the same 
configurations  except  with  the  short diffuser center- 
body,  configuration LVS, are presented in figure 29. 
The  longitudinal  distributions of wall pressure coeffi- 
cient  and  the cross-sectional distributions (near the 
exhaust) of velocity and wall pressure coefficient are 
given in figures 30,31 and  32, respectively. Figure 33 
summarizes the resulting performance parameters. 

Annulus  flow patterns upstream of the diffuser ANALYSIS AND DISCUSSION 
inlet  and diffuser performance results  are presented  in 
figures 8 through  33, which  are  in turn  indexed  by  The  major  effects  and  trends which  may  be 
configuration  in  table 6. derived from these data are  presented  in figures 34 

through  42. Table  7  provides an  index to these figures. 

Configurations With Uniform  Annulus Centerbody 

Details of  the  experimental  annulus flow distribu- 
tions  (without artificial azimuthal  distortion)  for  the 
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Effect  of  Contraction Length 

The  effect  of  the  contraction  length  on  the  dif- 
fuser  inflow is  shown in  figure 34. The average swirl 
angle (fig. 34(a)) was virtually the same, through  the 
range of mass-flow rate,  for  both  contractions. HOW- 
ever, the velocity  profile, as measured by  the average 
effective  area fraction (fig.  34(b)), was more  uniform 
for  the longer, more gradual contraction.  At  the same 
time,  the  static pressure recovery  near the  exit plane 
(fig.  35(a)) was slightly better (i.e., higher) with the 
long  contraction. However, in spite of this difference 
in  the immediate pressure recovery, there was no sig- 
nificant change in the  static pressure recovery down- 
stream in  the  settling  duct (fig. 35(b)). 

General Diffuser Performance 

The contraction  effects  data  of figures 34 and  35 
indicate that,  for a given swirl angle,  a more radially 
uniform entering flow produces a  greater pressure 
recovery. This trend agrees in general with  conclu- 
sions that may be  deduced  from some  results found 
in the  literature ( e g ,  see refs. 9-17,  and fig. 36, 
derived from fig. 2 of ref. 13). However, the  present 
results and those of Sovran and Klomp (ref. 1)  plotted 
in figure 37 indicate there are limitations on this 
conclusion. 

In particular, figure 37 shows two  features of 
special interest: (1) the double-valued nature of the 
E versus C “parabola” with an apparent minimum 
around E = 0.92 and (2) the shift  in  magnitude of 
C for the  current  data  from  that  of Sovran and 
Klomp (ref. 1). The first aspect implies that,  for a 
range of  Evalues below about  0.92,  more radial dis- 
tortion (lower E) can give higher pressure recovery. 
The  second aspect implies  a  lack of correlation 
between current  and previous  results. Both  of these 
topics are discussed in appendix A; the conclusions 
and  explanations are  reasonably  simple. 

- Pe 

Pe 

A parabolic or double-valued form  of  the E-C 
Pe 

curve has not been generally described  previously, 
despite the  trend of the Sovran-Klomp data as shown 
in figure 37  and  the  trends shown in figure 34(a)  of 
reference 18. However, depending  on  the  nature  of 
the velocity  profile, the  trend is real. Greater irregu- 
larity, more  rapid  variation across the  duct,  and  cer- 
tain defect  locations cause  decreases, even severe 

decreases, in pressure recovery as shown in refer- 
ence 13. But with “well-behaved” profiles  as reported 
here  and by other.  authors,  the E-Cpe curve can be 
double-valued with a real minimum. The  shift in the 
E versus C curve, as discussed in  appendix A,  could 
have been  the result of  the mixing effect  of  the large- 
scale turbulence  created  at  the diffuser inlet  by  the 
two large motor-support  struts. 

The general performance  of  the  present  diffuser, 
then, correlates with data  of  other  authors  and, in 
fact,  extends  and clarifies previous results. 

Pe 

Effects of  Inlet Radial Distortion  and Swirl Angle 

The  correlated  data  from  the  current  test, showing 
the  effects of swirl on  the E versus C curve,  are 
plotted in figure ‘37.  The envelope of  the curves for 
various constant & values generally follows the shape 
of  the flu = 0 curve. Figure 38 shows the  effects of 
E on  the flu versus Cpe curve in  a different cross plot. 

The  trends  and results  shown for  the  static pres- 
sure recovery in figures 37  and 38 can be  summarized 
into  two major points.  First, for the  current LUL 
geometry and inflow patterns,  the  data suggest that 
two levels of distortion can produce  the same static 
pressure recovery and that a minimum recovery 
occurs  at  about E =  0.92. Second,  at a constant dis- 
tortion level, a  minimum pressure recovery is sug- 
gested at  about 5’ of swirl. While additional recovery 
is limited, in the lower-swirl direction to zero swirl 
the limit in the higher direction was not  attained  but 
seemed to be greater than  the value reached.  Refer- 
ences 2 and 9 support a trend showing that  more 
swirl holds  the greater potential  for  better diffuser 
performance. However, caution  must  be exercised  in 
the use of swirl for increased diffuser performance. 

Even though swirl has  been  shown to be  advan- 
tageous in this study as in  references 2 and 9 ,  care 
must be  exercised  in the use of swirl in fan diffuser 
applications.  Some residual swirl may (and probably 
will) remain downstream  of  the diffuser exit  for cases 
of swirling flows at  the  inlet. Persisting swirl could 
cause unwanted flow distortions  and  poor flow qual- 
ity in downstream  components - especially  critical 
in closedcircuit, wind-tunnel applications where 
turning vanes and  honeycombs  may  not  entirely 
remove the residual swirl before  the flow  reaches the 
test  section. In addition, leaving residual swirl at  a 
fan discharge means  a loss in net axial fan  thrust  and 

Pe 
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thus a  loss in efficiency. Inevitably, some  energy must 
be  diverted and  held in the swirling flow. 

Effects of  Distortion Devices 

Figure 39 summarizes the  effects  of  the  four  floor- 
mounted artificial distortion devices on the diffuser 
inflow  characteristics. The  data  points  for  distortion 
types A and B are clustered  around  the curve for 
“undistorted”  inflow,  indicating negligible effects on 
inflow from these two devices. Distortion C produced 
somewhat  more swirl at  a given flow rate (as seen in 
fig. 39(a)), but no measurable  differences  in  velocity 
profile uniformity  for  the  limited  data  obtained (see 
fig. 39(b)). In contrast,  distortion device D produced 
a  significant  variation  in swirl and radial distortion 
between the  two  azimuth  positions  studied,  indicat- 
ing large azimuthal  distortion. 

The diffuser performance resulting from  the  four 
artificially distorted inflows is shown in figure 40. As 
expected, devices A and B produced  only a small 
change in performance, suggesting a  qualitative limit 
on azimuthal  distortion  without significant penalty. 
The  type C device caused about a 3.8% reduction  in 
static pressure recovery, but  type  D,  the  most severe 
azimuthal  distortion,  produced a decrease in static 
pressure recovery of  about 6% (fig. 40(a)). This effect 
for  the  type D device showed  up  more dramatically  as 
an 8% decrease in the final, downstream pressure 
recovery C’ in figure 40(b). SD 

Pressure Distribution 

A theoretical  longitudinal  distribution  of pressure 
coefficient  in the diffuser is presented in figure 41. 
This distribution was calculated  assuming  ideal  isen- 
tropic flow. Figure 41 also  shows the pressure  coeffi- 
cient at  the diffuser exit as predicted  by  the  relation- 
ships given in  reference 8. These theoretical  estimates 
are compared to the  experimental results for azi- 
muthally  undistorted flow  (configuration LUL). 

From these  curves, three results are clear. First, as 
is common,  the  experimental pressure recovery con- 
tinued to increase into  the  downstream  settling  duct. 
Second, despite the simplicity of the  approach of 
reference 8, the  actual pressure recovery was pre- 
dicted reasonably well. (The diffuser loss calculation 
approach  of reference 8 was based on a  collection of 
data  from widely varying  diffuser  geometries  which 
was reduced to a single, simple analysis technique.) 

Third,  some  experimental results (e.g., as indicated  in 
fig. 14(a)) show pressure recoveries greater than 0.8 
for ideal  incompressible  flow. 

The  proper  explanation of the  latter result is dis- 
cussed in  detail in appendix B. The cause of the 
apparent  “extra” pressure  recovery is centered  in  the 
reference parameter chosen for  the recovery coeffi- 
cient  and in the  kinetic energy factor. This observa- 
tion of Cp values greater than calculated for  one- 
dimensional  ideal  flow is rare,  but  theoretically possi- 
ble for  nonuniform inflow conditions, as suggested 
in reference 1. 

Effect  of Diffuser Centerbody Length 

Although the  two diffusers with  different  center- 
bodies had  the same overall diffusion angle and area 
ratio,  the rate of diffusion in the  upstream  portion of 
the system was naturally greater with  the  short cen- 
terbody.  The  effects  of  this on performance  are  pre- 
sented in figure 42. The  parameters of exit  and  down- 
stream (settling duct)  static pressure recovery 
coefficients both  show  that  the  short  centerbody sig- 
nificantly degraded performance, almost certainly 
because of  the increased  severity of flow separation 
in the  more rapidly  diffusing geometry.  The full- 
length  centerbody, with its  more gradual area varia- 
tion, gave the  best  performance. 

CONCLUSIONS 

Some  conclusions about diffuser performance  may 
be  drawn  concerning (1) the  importance of upstream 
duct  geometry, (2) the  effects of azimuthally  undis- 
torted  but radially nonuniform  and swirling inflows, 
(3) the  performance penalties for  azimuthal flow dis- 
tortions,  and (4) the  importance  and  effects of 
centerbody  geometry. 

It is clear that  the geometry of the  contraction 
used ahead of a fan  and nacelle  diffuser is important. 
The  contraction  geometry can affect  the fan inflow, 
the resulting  fan discharge flow, and therefore the dif- 
fuser  inflow and  performance.  The results of this 
study  show  that, while the final  performance level (as 
measured by  the  downstream (settling duct)  static 
pressure recovery) may  not be appreciably affected, 
the  immediate pressure recovery at  the diffuser exit 
may  suffer. A gentle or long  contraction  duct  pro- 
duces  better inflow to the  fan  than does an  abrupt  or 
short  contraction. (Although more  complex,  the  con- 
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traction design suggested in  reference 8, one  with 
cubic wall contours,  should  produce even better 
inflow than  the long  linear contraction used in this 
study .) 

Even for  azimuthally  undistorted diffuser  inflow, 
the  rate  of change of velocity  profile  across the  annu- 
lus apparently  can  affect  the  static pressure recovery 
characteristics. For relatively gradual  profile varia- 
tions  and  for geometries similar to those  reported 
here,  entering radial velocity uniformities (E values) 
near 90%  and  entering swirl angles less than 5” should 
be approached  cautiously. Minimum performance 
(minimum static pressure recovery) was suggested 
at these conditions.  Better  performance was indicated 
for  the diffuser in this study  for  the higher swirl 
angles and  for  either  more or less inflow uniformity. 
Generally, swirl angles between 10” and  14”  pro- 
duced greater static pressure recovery. Swirl, being 
easier to achieve than  “perfect”  flow, may be  more 
effective  than  area fraction in maximizing pressure 
recovery.  However,  for  reasons of adverse,  secondary 
downstream effects  and “lost” energy,  the relative 
merits of swirl, flow quality, and fan system  effi- 
ciency must b.e evaluated for each application. 

Ames Research Center 
National  Aeronautics  and Space Administration 

Moffett Field, Calif. 94035, August 20, 1979 

Artificial devices producing  azimuthal  distortion 
had qualitatively  predictable effects on diffuser per- 
formance:  the greater the  distortion,  the  poorer  the 
performance. However,  a relatively large solid block- 
age (covering about 40% of the  upstream  duct area) 
was necessary to produce even a 6% decrease in  exit 
static pressure  recovery. This decrease was equivalent 
to an 8% reduction in the  ultimate pressure recovery. 
(As suggested in  reference 19, static pressure  recovery 
measured in  the  downstream  settling  duct  may  be a 
more sensitive and accurate indicator  of overall dif- 
fuser performance.)  Azimuthal distortion  tended to 
cause far more significant  penalties  in  diffuser  per- 
formance  than did radial distortion of comparable 
magnitude.  Maintenance of axial symmetry is impor- 
tant to the performance of annular diffusers. 

Even for identical overall diffusion angles and area 
ratios,  the rate of diffusion  within the diffuser com- 
ponent  affected  its overall performance. The long 
centerbody  produced higher static pressure recovery 
than  the  short  one. Gradual  diffusion (Le., lower  rates 
of diffusion at  the beginning of the  component, 
probably  due to suppression of separation), gave 
better diffuser  performance for this geometry. 
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APPENDIX A 

BASIC DIFFUSER PERFORMANCE 
CHARACTERISTICS 

Figure 37 presents current  data  for  the LUL con- 
figuration '.and similar zero-swirl data derived from 
reference 1 for  static pressure  recovery, C as  a 
function  of  inlet effective  area fraction E. These data 
imply  that: (1) Cpe is a  double-valued function  of E 
with a minimum,  for this geometry, at  about E= 0.92 
and (2)  the  present  data  show  uniformly higher levels 
of pressure  recovery than  do previous data, regardless 
of swirl angle. 

The first implication raises doubts (as in 
refs. 9-17) as to whether greater uniformity (higher 
values of always produces greater static pressure 
recovery. The second implication,  the shift  in C Pe 
levels, concerns whether  the  current  data  correlates 

Pe' 

magnitude  of  the  distortion. Figure 37 confirms  that 
at  least two distributions (two values of E) can  pro- 
duce  the  same  static pressure  recovery. Reference 13 
shows that  the same value of   Ecan  give two very dif- 
ferent levels of pressure  recovery. 

Thus it can be  inferred  from  the  literature  that in 
figure 37 the increase in Cpe as Edrops  below 0.92 
must  be  dependent on profile shape. At a given value 
of E, the pressure recovery was improved  in  refer- 
ence 13  (figs. 2 and 3) or  not changed in reference 18 
(fig. 34(c)) by changes in  the profile  shape. (In other 
words, E i s   no t  a  uniquely  defining parameter  for pre- 
dicting pressure  recovery.) It is therefore reasonable 
to predict  that  certain  careful  or  fortuitous selections 
of the velocity  profile will further improve static pres- 
sure recovery at the same value of E. The  data pre- 
sented in figure 34(a) of reference 18  support this 
potential  and  the  current  data  confirm it. 

with previous  measurements. Both results  are resolv- 
able and  contribute to the  understanding  of diffuser Strut and Increased Pressure Recovery 
performance. 

Static Pressure Recovery and Inflow  Distortion 

The lower  parabolic  line  in  figure 37 shows the 
effect of F o n  diffusers  whose  geometries  are near  the 
first  stall  limit  where  peak values of Cp occur. It is 
based on  the  correlation line given in figure 24 of 
reference 1, derived from  experiments on two- 
dimensional, conical,  and  annular diffusers without 
inlet swirl and  with very low levels of  turbulence  at 
the  inlet. (At zero  inlet swirl, the  geometry  of  the 
diffuser  tested  in  this  program  would  be near the 
peak recovery geometry  typical of other annular 
diffusers as shown by  the C * line  in fig. 15  of 
ref. 1). 

This parabolic curve shows that,  for no entering 
swirl, the diffuser pressure recovery is a  double-valued 
function  of effective  area fraction E. The pressure 
recovery coefficient may be improved from  its mini- 
mum,  at  about E= 0.92,  by  either an increase or a 
decrease in  profile uniformity as expressed by  the 
parameter E Thus, a given pressure recovery, based 
on the mean upstream dynamic pressure,  may  be 
achieved by  two  inflow  distributions  (two levels of 
uniformity)  at  zero  entering swirl angle. 

From references 13,  16,  and  18,  it is clear that  the 
pressure recovery is dependent on the  exact  nature of 
the velocity profile,  that is, the  form,  location,  or 

P 

Initially, figure 37  may seem to imply disagree- 
ment in the  magnitude  of C between the previous 
results of other  authors  and  the  current  data. No 
zero-swirl curve was generated by  the  data collected 
in this study. However, if a set of data  had been 
obtained at  & = 0, it is likely that it would have been 
observed,  when plotted in figure 37,  to be 0.05 to 
0.03 points in C higher than  the reference /3, = 0" 
curve. There  are several reasons for believing this. 
First,  the small shifts  between curves of & # 0 are 
not  consistent  with  the large drop  in C to the 

= 0" curve.  None of the  other annular  diffuser 
experiments  that used inlet swirl showed  discon- 
tinuous  or  sudden changes of the swirl effect  between 

= 3' and 0" (see refs. 2 ,  14,  and 15). Clearly they 
showed very small or  zero changes in C versus 
& until & exceeded 3'. The  second and  more physi- 
cally appealing reason for believing that a "measured" 
& = 0 curve  would have to be higher on the graph of 
figure 37 is the mixing effect of the large-scale tur- 
bulence that  may have been  created at  the diffuser 
inlet  by  the wakes behind the  two large struts  sup- 
porting  the fan motor.  The wakes and turbulence 
thus  produced have in other cases been shown experi- 
mentally to cause increases in pressure recovery 
(refs. 16 and 17). 

The  benefits  of wakes at  the  inlet are more 
apparent  than real since they create  a total pressure 

Pe 

Pe 

Pe 
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loss penalty  that  must be  charged to the overall per- 
formance  of  the diffuser. This penalty will appear  far 
downstream  after  the mixing is complete,  and  the 
mixing loss will probably  offset  the small gain deliv- 
ered  by  an increase in C namely, the, estimated 
boost in C by 0.03 to 0.05 points above the &= 0 
curve in figure 37. 

Pe’ 
Pe 

APPENDIX B 

MAXIMUM THEORETICAL PRESSURE 
RECOVERY 

Some current  experimental results, such as those 
in figure 14(a) for  configuration LUL, show pressure 
recoveries greater than 0.8 for ideal,  incompressible 
flow shown in figure 41.  The  proper  explanation  of 
this  result is known  but  often  overlooked.  The refer- 
ence static  and  dynamic pressures, although  they 
possess some uncertainty,  do  not  appear  to be  suffi- 
ciently  in error  to  account  for  the  phenomenon of 
“extra” pressure recovery.  However, the  form of the 
equation  for pressure recovery in figure 24  of refer- 
ence  1 provides an understanding: 

Here, Ez (usually less than E) is the effective  area 
fraction  at  the diffuser exit  and AR is the diffuser 
area ratio. Clearly, the pressure recovery depends on 
the flow uniformity at  each  end of the diffuser and 
depends  most strongly on the radial uniformity at  the 
inlet (E). While the  theoretical values in figure 41 
were derived for  uniform inflow (E = l), the experi- 
mental results arose from flows with greater  radial 
distortion (E<  1). Since the pressure recovery and 
the effective  area fraction are inversely related as 
shown  in the above equation,  the  nonuniform experi- 
mental inflows  could be  expected to produce larger 
indicated values of pressure recovery than  the ideal- 
ized, uniform  (one-dimensional) theoretical inflow. 

This  observation has  been  demonstrated  theoreti- 
cally in reference 16, where the  maximum  theoreti- 
cal pressure recovery of a  diffuser with  nonuniform 
inlet  profile is larger than  the ideal,  one-dimensional - 

recovery, cpi, -D = 1 - (l/ARz).  For incompressible 
flow, 

and the inlet  kinetic  energy factor is greater than 
unity so that C must exceed C As 

confirmed  in  reference 1, the  actual observation of 
real Cp values greater  than Cpi, -D is rare,  but  theo- 
retically possible. 

Ptheo rnax Pi, 1 -D’ 
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TABLE 1.- FAN DRIVE SYSTEM DESIGN PARAMETERS 
~ ~ ~ 

System parameters 

:omplete system: 
Hub-to-tip-diameter ratio 
Drive power, W (hp) 
Total pressure rise (head), m (ft) of air 
Weight flow, N/sec (lb/sec) 

Cotor only: 
Number of blades 
At 3/4 radius:  Chord, cm (in.) 

Maximum thickness,  cm (in.) 

Solidity(  chord no. of blades 

Stagger angle, deg 
circumference 

Rotational speed  (counterclockwise looking upstrean 

Tip  speed, m/sec (ftlsec) 
r Pm 

stator only: 
Number of blades 
Chord,  cm (in.) 
Maximum thickness, cm (in.) 
At 314 radius: 

Solidity 
Stagger angle, deg 

1 Design values 

For configuration! 
uniform  annul 

centerbody diam 
(see fig. 3) 

0.5 
376.7 X lo3 (50t 
207.3  (680) 
1632.5  (367) 

15 
15.95  (6.28) 
1.60  (0.628) 

0.554 

40.8 
1200 

11 5 (377) 

23 
11.13  (4.38) 
1.1 1 (0.438) 

0.594 
4.28 

For  configurations with 
varying annulus 

centerbody  diameter 
(see fig. 4) 

0.4375 
376.7 X lo3 (505) 
207.3  (680) 
1632.5  (367) 

15 
15.67 (6.17) 
I .57 (0.617) 

0.546 

43.6 
1200 

11 5 (377) 

23 
13.44 (5.29) 
1.49  (0.529) 

0.717 
8 .OO 
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TABLE 2.- ANNULUS GEOMETRY DETAILS 

Quantity 

Shell diameter, m (ft) 

Centerbody diameters,  m (ft): 
At inlet 
At exit 

Fan rotor and stator 

Length, m (ft) 
Motor support struts: 

Number 
Chord,  m (ft) 
Maximum thckness, m (ft) 
Thickness distribution 

HOW areas, mz (ft'): 
At inlet 
Minimum at  stators 
Minimum at  struts 
At exit 

Measurements 

For  configurations  with For  configurations with 
uniform  centerbody varying centerbody 

diameter diameter 
(see fig. 3) (see fig. 4) 

1.84  (6.03) 1.84  (6.03) 

.91 (3.00) 
.91 (3.00) .91 (3.00) 
.80 (2.61) 

(see table 1) 

3.1  (10.3) 3.1  (10.3) 

2 2 
.9 1 (3.0) 
.084  (0.276)  .084  (0.276) 

.91 (3.00) 

(see table below) 

1.996  (21.489) 2.155  (23.199) 
1.877  (20.205) 1.977  (21.276) 
1.9 18  (20.645) 1.918  (20.645) 

Motor support  struts 

%stance from 
leading edge, 
iction of chord 

0.007 
.014 
.02 5 
.0625 
.lo1 
.175 
.2 5 
.35 1 
.5 
.70 1 
.800 
.9 5 

1 .oo 

Thickness, 
fraction of chord 

0.018 
.026 
.034 
.050 
.062 
.078 
.088 
.092 
.088 
.068 
.052 
.018 

0 
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TABLE 3.- DIFFUSER GEOMETRY  DETAILS 

Entrance dimensions: 
Shell diameter, m  (ft) 
Centerbody  diameter, m  (ft) 
Hub-to-shell-diameter ratio 
Flow area, m2 (ft') 

Exit dimensions: 
Shell height, m  (ft) 
Shell width, m (ft) 
Long centerbody  diameter, m (ft) 
Short  centerbody  diameter, m (ft) 
Flow area 

Lengths, m (ft): 
Shell 
Long centerbody 
Short  centerbody 

Area ratio 

Equivalent cone angles, deg: 
Shell 
Long centerbody 
Short  centerbody 
Overall system 

I .84  (6.03) 
.91  (2.99) 
.496 

2.001 (21 S36) 

2.21  (7.25) 
2.08  (6.83) 

.06  (0.20) 
0 
4.597  (49.486) 

4.08  (13.38) 
4.1  1  (13.50) 
2.88  (9.45) 

2.3 

8.1  6 
12.64 
17.98 
11.53 
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TABLE 4.- DIFFUSER CENTERBODY  COORDINATES 

Distance from 
diffuser entrance, 

fraction of diffuser length 

0 
.o 5 
. I O  
.15 
.20 
.25 
.30 
.35 
.40 
.45 
.so 
.55 
.60 
.625 
.65 
.675 
.70 
.706 
.75 
.80 
.85 
.90 
.925 
.95 
.975 

1 .oo 
1.01 

i Tail cone radius, 
fraction of radius  at diffuser entrance 

Long centerbody 

1 .om 
.999 
.997 
.992 
.983 
.973 
.960 
.944 
.925 
.904 
.878 
.846 
.810 
.789 
.772 
-749 
.728 
.725 
.677 
.617 
.546 
.457 
.406 
.340 
.26 1 
.133 

0 

Short centerbod] 

1 .ooo 
.966 
.933 
.899 
.865 
.830 
.793 
.754 
.713 
.665 
.610 
.542 
.454 
.398 
.334 
.252 
.105 

0 

16 



~~~~ 

Position, 
fraction of 

diffuser length 
downstream of 

diffuser  entrance 

~ 

0 
.05 
.I 0 
-1 5 
.20 
.25 
.30 
.35 
.40 
.45 
S O  
.55 
.60 
.625 
.65 
.675 
.70 
.706 
.75 
.80 
.85 
.90 
.925 
.95 
.975 

1 .oo 
1.01 

TABLE 5.- AREA  DISTRIBUTIONS  IN DIFFUSER 

~~ 

Outer 
shell 

~~ ~~ 

1.326 
1.390 
1.452 
1.512 
1.571 
1.629 
I .685 
1.739 
1.791 
1.842 
1.892 
1.940 
1.9 86 
2.009 
2.03 1 
2.053 
2.074 
2.079 
2.115 
2.1 55 
2.194 
2.230 
2.248 
2.266 
2.283 
2.299 
2.299 

Diffuser  areas, 
fraction of net flow area  at diffuser entrance 

Diffuser withlong centerbody T 
Long centerbody 

blockage area 

0.326 
.325 
.324 
.321 
.315 
.309 
.300 
.29 1 
.279 
.266 
.25 1 
.233 
.214 
.203 
.194 
.183 
.173 
.171 
. 1 49 
. 1 24 
.097 
.068 
.054 
.038 
.022 
.006 

~~~ 

0 
~~ 

Net flow 
area 

1 .ooo 
1.065 
1.128 
1.191 
1.256 
1.320 
1.385 
1.448 
1.512 
1.576 
1.64 1 
1.707 
1.772 
1.806 
1.837 
1.870 
1.901 
1.908 
1.966 
2.03 1 
2.097 
2.162 
2.194 
2.228 
2.261 
2.293 
2.299 

Diffuser with short centerb2dy i 

Short centerbody 
blockage area 

0.326 
.304 
.284 
.263 
.244 
.225 
.205 
.185 
.I 66 
.I44 
.I21 
.096 
.067 
.052 
.03 6 
.02 1 
.004 

0 

Net flow 
area 

1 .ooo 
1.086 
1.1 68 
1.249 
1.327 
1.404 
1.480 
1.554 
1.625 
1.698 
1.77 1 
1.844 
1.919 
1.957 
1.99 5 
2.032 
2.070 
2.079 
2.1 15 
2.155 
2.194 
2.230 
2.248 
2.266 
2.283 
2.299 
2.299 
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TABLE 6.- INDEX TO BASIC DATA FIGURES 

Number 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28  
29 
30 
31 
32 
33 

Figure 

Description 

Annulus swirl-angle distributions 
Annulus velocity profiles 
Annulus flow  summary 
Wall static pressure distributions 
Velocity distributions at  exit 
Static pressure distributions at  exit 
Diffuser performance  summary 
Annulus flow  summary 
Diffuser performance  summary 
Annulus swirl-angle distributions 
Annulus velocity profdes 
Wall static pressure distributions 
Velocity distributions at  exit 
Static pressure distributions at  exit 
Annulus swirl-angle distributions 
Annulus velocity profiles 
Annulus flow summary 
Wall static pressure distributions 
Velocity distributions at  exit 
Static pressure distributions at  exit 
Diffuser performance  summary 
Annulus flow  summary 
Wall static pressure distributions 
Velocity  distributions at  exit 
Static pressure distributions at  exit 
Diffuser performance  summary 

r 
Abbreviation 

code 

LUL 

I 

LVS I 
SUL 
SUL 
LUL I 

I 

LVL 

Configuration 

Contraction 
length 

Long I 
Short 
Short 
LC 

Annulus 
centerbody 

diameter 

Unij 

Var 

For 

Diffuser 
centerbody 

length 

I ihc )rt 

Test condition 

Artificial 
distortion 

devices 

None 

Ir 
All 

1 
None 

v 

40.8 
40.8 

Variable 
40.8 
40.8 

Variable 

1 
40.8 I 

I 

43.2 
43.2 

Variable 
43.2 
43.2 
43.2 

Variable 
43.1 



TABLE 7.- INDEX TO COMPARISON  AND ANALYSIS FIGURES 

' Number 

L 

1 

34 

35 

36 

31 

38 

39 

40 

41 

42 

Figure 

Description 

Effect of contraction  length on annulus 
flow 

Effect of contraction length on diffuser 
performance 

Effect of radial distortion on diffuser 
performance 

with Ba t  constant j$ 

with pa at  constant E 

Variation of early static pressure recovery 

Variation of early static pressure  recovery 

Effect of azimuthal distortion.on annulus 
flow 

Effect of azimuthal distortion on diffuser 
performance 

Theoretical and experimental diffuser 
pressure distributions 

Effect of diffuser centerbody length on 
diffuser performance 

r Configuration I Test condition 

Abbreviation 
length code(s) 

Contraction 

LULand I Both 

"- I 

Annulus 

diameter diameter 
centerbody centerbody 

Diffuser Artificial 
distortion 

devices 

40.8 

I 
As described for reference 9, figure 13.3 

LUL 

LUL 

v 
LVL and 
LVS 

Long Uniform 
and as described for refel 

Long , Uniform 

Both 

None Variable 

None 

All 

All 

None 

None 

~~ ~ ~~~ 

Variable 

40.8 

40.8 

40.8 

Approx. 
43 
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(a) View from  the  front  quadrant 

(b) View from  the rear quadrant. 

Figure 1 .- Overall exterior views of  test  model  and  apparatus. 
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(c) Schematic of test  apparatus  with  instrumentation  locations. 

Figure 1 .- Concluded. 
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CONTRACTION 

CONTRACTION 
DISTORTION 

SCREENS 
(SEE FIGURE 2 (b)) 

DISTORTION FENCES 
APPROX. 0.6 (2) SPACING ALL DIME 

(a) Side view with  distortion devices. 

.NSIONS IN rn 

Figure 2.- Details of inlet  duct and contraction  sections. 
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r DISTORTION TYPE 

IESIGNATION 

A 

B 

C 

D 

MATERIAL 

SCREENS 
(14 x 18 MESH) 

SCREENS 
(14 x 18 MESH) 

SCREENS 
AND SOLID 
BARRIERS 

SOLID BARRIER 

DETAILS OF DISTORTION GENERATOR 

GEOMETRY 

2 LAYERS 

3 LAYERS 

5 LAYERS 

H = LOCAL DUCT HEIGHT = 2.1 1 
(6.92: 

DOUBLE THAT OF “A“ 

MAXIMUM HEIGHT 
FRACTION OF 

LOCAL DUCT HEIGHT 

0.5 

0.5 

LOCATION, 
DISTANCE FORWARD 

OF CONTRACTION, 
FRACTION OF 

LOCAL DUCT HEIGHT 

1.21 

1.21 

DOUBLE THAT OF “A‘ 
+ 5 FENCES  (SEE FIGURE 2 (a)) 

- 

- 

SOLID WALL (SEE FIGURE 2 (a))  0.06 0.4 

(b) Definition  and  details of distortion devices. 

0.5 DISTRIBUTED 
(SEE FIGURE 2 (a))  

Figure 2.- Concluded. 



0 PRESSURE-SURVEY STATION FOR "X" 
PARAMETER (SEE FIGURE 3 (b)) 

0 PRESSURE TAP LOCATION FOR WALL 
STATIC PRESSURE COEFFICIENT  DATA 

ALL DIMENSIONS IN rn (ft) 

(a) Side view. 

Figure 3.- Details of  annulus  component  with uniform centerbody. 
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VIEW LOOKING DOWNSTREAM 

SURVEY  LOCATION FOR 
p, V/Vrn,  E DATA 

ALL DIMENSIONS IN rn (ft) 

(b) Cross section at  annulus survey location. 

Figure 3 .- Concluded. 
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D, = 

CON 1.84 V 
(6.03) 
diarn 

- 
vrn 

@ PARAMETER (SEE FIGURE 4 (b)) 
PRESSURE-SURVEY STATION FOR "X" 

0 SURFACE PRESSURE ORIFICE  LOCATION FOR WALL 
STATIC PRESSURE COEFFICIENT  DATA 

ALL DIMENSIONS IN rn ( f t )  

(a) Side view. 

Figure 4.- Details of annulus  component  with varying centerbody  diameter. 
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VIEW  LOOKING DOWNSTREAM 

SURVEY LOCATION FOR \ 0. V/Vrn, E DATA 

ALL  DIMENSIONS IN rn (ft) 

(b) Cross section at  annulus survey location. 

Figure 4.- Concluded. 
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1.84 (6.03) 
diam 

I 
2.21 (7.25)  HIGH 

BY 
2.08 (6.83) WIDE 

"- SHORT CENTERBODY 

PRESSURE-MEASURING STATION FOR 
"X" PARAMETER 0 

0 SURFACE PRESSURE ORIFICE  LOCATION FOR 
WALL PRESSURE COEFFICIENT DATA 

ALL  DIMENSIONS IN m (ft) 

(a) Side view. 

Figure 5.- Diffuser  geometries  (with long and  short  centerbodies)  and  instrumentation  locations. 



I 
4 Y  

SIDE  VIEW 
(WITH LONG CENTERBODY) 

x rs (TYPICAL) 

D, = 1.84  (6.03) 

L = 4.08  (13.38) 

Rc/b = 0.46 (1.50) 

rc/b f R,/b = (SEE TABLE 4) 

‘dDS = ’h (1 -c) X 

Hs/Ds = 1 + 0.202 (r) X 

w~-”/ ws/Ds = 1 + 0.133 (c) X 

SECTION Y-Y 
ALL DIMENSIONS IN m (ft) 

(b) Duct  shape  parameters. 

Figure 5 .- Concluded. 
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STATIC PRESSURE 
RING (8 PORTS) 

TOTAL 
PRESSURE 
PORT 

Figure 6.- Traversing six-port survey probe. 



.7 - 

.6 

-5 0 5 10 15 
SWIRL ANGLE, 0, deg 

(a) Diffuser inflow data from annulus  survey. 

Figure 7.- Uncertainties in plotted  and  tabulated  results. 
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p .012 
z e  

on .010 

.008 
a I-0 - .006 
K O  &' 

UJ 0 .004 

i o ,  
Z k K  

U 
L 0 

.I4 
P .I 2 

w n 

t 

.1 .2 .3 .4 .5 .6 .7 
MAGNITUDE OF PRESSURE COEFFICIENT, 

k p I ,  ICp,1, OR ICpSD I 

- 1 I I I I 1 I I 
30 40 50 60 70 80 90 100 

FLOW RATE, m, %OF DESIGN 

(b) Diffuser internal  and  exhaust flow and  performance  data. 

Figure 7.- Concluded. 
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20 

15 

Q 
0) 

U 

j 10 
ci 

VJ z 
5 

0 

SURVEY 
AZIMUTH 

0 TOP 
0 PORT 
A PORT 

h, 
%OF DESIGN 

71.5 
69.0 
89.1 

0 0 0  

0 
El 
0 

10 

cn 
0) 
U 
@i 

CT 

v) 

4- 5 - - 
s A A A 

u 

0 I 1 1 1 I 
.5 .6 .7 .8 .9 1 .o 

R/RS 

(a) zz 70% 
(b) m x 90% 

Figure 8.- Annulus swirl-angle distributions  for LUL configuration (see Notation  and table 6) with 5 = 40.8' 
and  no artificial azimuthal  distortion 
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-. 

SURVEY m. 
AZIMUTH %OF DESIGN deg 

0 TOP 94.4 3.5 
a TOP 99.8 2.7 
0 TOP 105.1 2.0 
0 PORT 104.3 1 .o 

43. 

K 

E 
C) 

0 I I 

f 5[ 

A- h 
K L 

A 
Y 

ri 

K 
Ai 

n v 
.5 .6 .7 .8 .9 1 .o 

RIRS 

(c) m = 95% 
(d) = 100% 
(e) m = 105% 

Figure 8 .- Concluded. 
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AZIMUTHAL 
DISTORTION, 

Va/Vrn 
Va SURVEY k E=- 

AZIMUTH % OF DESIGN Vmax 
0 TOP 71.5  0.85 1.03 
0 PORT 69 .O 0.88  0.94 
A PORT 89.1  0.91  0.99 1.25 r 

E 
1.0 

> 
" 

0 

a 

0 0 
0 

0 

Lo-" 
a 

0 
a 

+ A A A A  
A 

? 1.0 "-a "-""" > A A 

I m  A 

I b) 

.5 .6 .7  .8 .9 1 .o 
R/RS 

.75 I I I 

(a) 70% 
(b) m = 90% 

Figure 9.- Annulus  velocity  profiles for LUL configuration (see Notation  and  table 6) with $ = 40.8' and 
no artificial azimuthal  distortion. 
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AZIMUTHAL 
DISTORTION, 

va/vm 
v a  SURVEY h, E=- 

AZIMUTH % OF DESIGN ",ax 

0 TOP 94.4 0.93 1.01 
A TOP 99.8 0.94 1.01 
v TOP 105.1 0.94 1 .oo 

104.3 0.94 1 .oo 

C) 

.75 I I I 

dl 
.75 I I I 

e) 
.75 I I I I I 

.5 .6 .7 .8 .9  1 .o 
RIRS 

(c) fi = 95% 
(d) m = 100% 
(e) li? = 105% 

Figure 9.- Concluded. 
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14 

W > a 
2 

0 

.92 

2- .88 E 
a .86 

.84 

5 .90 

U 

a 
.82 

F .80 

u .78 Y 

FAN STAGGER 
ANGLE, t, deg 

0 38.0 
0 40.8 
A 62.9 

U 

.76 - ' 
bl 

.74 
A 

I I I I 1 I I 1 I 
20 30 40 50 60  70  80 90 100  110  120 

FLOW RATE, m, %OF DESIGN 

(a) Average swirl angle. 
(b) Effective  area fraction. 

Figure 10.- Annulus flow parameters  for LUL configuration (see Notation  and  table 6) and no artificial 
azimuthal  distortion. 

3 8  



r ANNULUS  DIFFUSER  SETTLING  DUCT 

-7- 

CP 

.8 

.6 

.4 
TAP  LOCATION 

0 BOTTOM WALL 
A CENTERBODY BOTTOM 
0 CENTERBODY TOP .2 

0 

-.2 - 

a) 01 1 
-.4 - 1 

CP 

.8 

.6 

.4 

.2 

0 

-.2 

-.4 
-.5 0 .5 1 .o 1.5 2.0 

X/L 

(a) = 70% 
'(b) rn = 90% 

Figure 1 1  .- Longitudinal distribution of static pressure coefficient for LUL configuration (see Notation and 
table 6) with .$ = 40.8" and no artificial azimuthal distortion. 
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.8 

.6 

.4 

CP .2 

0 

-.2 

t 
TAP  LOCATION 

0 BOTTOM  WALL 

i A ' CENTERBODY BOTTOM 
0 CENTERBODY TOP 

I 0 TOP WALL 

1 
C) 

-.4 1 

1 
1 1 1 

.8 

.6 

.4 

CP .2 

0 

-.2 

-.4 
-.5 0 .5 1 .o 1.5 2.0 

X/L 

(c) 1;2 = 95% 
(d) r i  = 100% 

Figure 1 1  .- Continued. 
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.8 

.6 

.4 TAP LOCATION 
0 BOTTOM WALL 
A CENTERBODY BOTTOM 

CP .2 

0 

-.2 

-.4 1 1 I I I I 
-.5 0 .5  1 .o 1.5 2 .o 

x/ L 

L -  

Figure 11 .- Concluded. 
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Figure 12.- Distribution of velocity,  looking upstream, near  diffuser exit plane for LUL configuration (see 
Notation  and  table 6 )  with ,$ = 40.8' and no artificial azimuthal  distortion. 
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n 
Ir I 

(b) liz = 90% 

Figure 12.- Continued. 
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(c) lit x 95% 

Figure 12.- Continued. 
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rop ............................................................ 
e 

- I 

c . . . . 
e 
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I 

c 0 , 99s 1 ,SSl 1,411 1 I O O S  
8 

"" "- - . 

". 
0,  T S L  0 , 122 1 ,s21 . 

c 
"" 

1 mS2b c 

(d) liz = 100% 

Figure 12.- Continued, 
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TOP 
IIIIIIIIII.~IIIIIIIIIIL~IIIIIIIILIILLI~I~IILIIIIIIIIIL~III~I 
1) e 
I 0 
I 0 , 668 1,244 1 , 181 0 , 9 4 7  I 
I 
I 

I 
I 

" .. - ". - - - - - ~ 

I 4 

I L 
* I 

I , u s a  1,012 1 * 0 5 2  1 ,548 L 
I 

(e) = 105% 

Figure 12 .- Concluded. 
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I 

1 .o 

.8 

CP 

.6 

APPROX. rh, PRESSURE 
%OF DESIGN RECOVERY, Cpe 

0 70 
0 90 
0 95 
A 100 
A 105 

0.71  1 
0.644 
0.658 
0.664 
0.674 

.4 
0 60  120  180  240 300 360 

8. deg 

Figure 13.- Distribution of wall static pressure coefficients  near  diffuser exit plane for LUL configuration (see 
Notation  and table 6) with E = 40.8" and no artificial azimuthal  distortion. 
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I1 I I I 1  I I1 I1 I1 I l l  

? 

.98 

.96 

.94 

.92 

.90 

.88 
I" 

.86 
0 
IL .84 

8 .82 

$ .80 

0 .78 > 

E .76 

a .74 

.72 

.70 

.68 

.66 

.64 

al 
P 

z 

I& 
W 

w 

z: 

2 
E 

W 

l -  

- 

- 

- 

- 

- 
- 
- 

- 
- 
- 
- 

- 

.62 I I I 
30  40 50 60  70  80 90 

1 ~~ I 
FLOW RATE, h, % OF DESIGN 

FAN STAGGER 
ANGLE, .$, deg 
0 38.0 
0 40.8 
A 62.9 

(a) Static pressure recovery coefficient  near exit plane. 

100 
I. .. -I 

110 

Figure 14.- Diffuser performance for LUL configuration (see Notation  and  table 6) with no artificial azimuthal 
distortion. 
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n80 r 
FAN STAGGER 
ANGLE, E ,  deg 

0 38.0 
0 40.8 

.72 1 I I I I I 
60 70 80 90 100  110 

FLOW RATE, &, % O F  DESIGN 

(b) Static pressure  recovery in settling  duct. 

Figure 14.- Concluded. 
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FAN STAGGER 
ANGLE, 6 ,  deg 
0 35.4 
0 40.8 
A 52.8 
A 62.9 

2 . 7 8  - 7 "P 
LU -76 I I I I I I U 

30 40 50 60 70 80  90 100 110 120 
FLOW RATE, rh, %OF DESIGN 

(a)  Average swirl angle. 
(b) Effective area  fraction. 
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>- .80 
K 
W > 

.78 
W 
K 

- 

.70 

.68 
40 50 

FAN STAGGER 
ANGLE, e, deg 
0 35.4 
0 40.8 
A 52.8 

0 
0 

0 

L 
60 70 

0 
u 
80 90 
I 

100 
FLOW RATE, m, %OF DESIGN 

(a)  Static  pressure  recovery coefficient near exit plane. 
(b) Static  pressure  recovery in settling duct. 

I 
110 
I 

120 

Figure 16.- Diffuser  performance for SUL configuration  (see Notation and table 6) with no artificial azimuthal 
distortion. 
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lo I 

DISTORTION 
DEVICE - NONE -- NONE 

0 TYPE “A” 
0 TYPE “A“ 
A TYPE “B” 

- 

v TYPE “B” 

SURVEY 
AZIMUTH 

PORT 
TOP 
TOP 
PORT 
TOP 
PORT 

m, pa, 
%OF DESIGN deg 

89.1  4.1 
94.4 3.5 
92.8 3.7 
89.3 4.0 
91 .I 4.0 
89.7 4.0 

I I I I I I I I I I 

m 
-0 
Q 

r; 
-I - 5  

I /n 

~ a z cn 

0 
.5 .6 .7 .8  .9 1 .o 

R/RS 

(a) Type A distortion. 
(b) Type B distortion. 

Figure 17.- Effect of distortion on annulus  swirl angle for LUL configuration (see Notation  and  table 6) with 
t = 40.8’. 
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DISTORTION SURVEY 6 
DEVICE  AZIMUTH %OF DESIGN deg 

'a8 

- NONE 
NONE 
NONE 
NONE 

NONE 
NONE 

" "- 
"" 

0 TYPE "C" -.- 

l o r  

-..- 
A TYPE "D" 

m 0 T Y P E " 0  
a" 

TOP 
TOP 
TOP 
PORT 
BOTTOM 
PORT 
TOP 
TOP 
BOTTOM 

94.4 
99.8 
105.1 
104.3 
99.8 
89.1 
94.4 
90.6 
90.7 

3.5 
2.7 
2.0 
1 .o 
4.0 
4.1 
3.5 
3.2 
6.8 

10 

a 
A 

7 

El 
a 

-5 I - 
.5 .6 .7 .8 .9 1 .o 

R/RS 

(c) Type C distortion. 
(d) Type D distortion. 

Figure 17.- Concluded. 
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DISTORTION 
DEVICE - NONE 

NONE 
0 TYPE "A" 
0 TYPE "A" a TYPE "B" v TYPE "B" 

" 

Va 
SURVEY h, E=- 
AZIMUTH % OF DESIGN "ma, 

PORT 89.1 0.91 
TOP 94.4 0.93 
TOP 92.8 0.92 
PORT 89.3 0.91 
TOP 91.1 0.93 
PORT 89.7 0.9 1 

AZIMUTHAL 
DISTORTION, 

Val Vrn 

0.99 
1.01 
1.03 
0.99 
1.04 
0.98 

E 

> ? 1.0 

""_ E p" . """""" - 

:x-- 
/ 

a) 
.75 I I I 

1-25 r 

b) 
.75 I I I 1 

.5 .6 .7  .8 .9 1 .o 
RIRS 

(a) Type A distortion. 
(b) Type B distortion. 

Figure 18.- Effect of distortion  on  annulus velocity  profiles for LUL configuration (see Notation  and table 6) 
with t = 40.8'. 
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DISTORTION 
DEVICE - NONE 

" NONE --- NONE 
"" NONE 

NONE 
NONE 

0 TYPE "C" ""_ -.- 
A TYPE "D" 
0 TYPE "D" 

SURVEY h, E =- "a 
AZIMUTH %OF DESIGN "ma, 
TOP  94.4 0.93 
TOP  99.8  0.94 
TOP  105.1 0.94 
PORT  104.3  0.94 
BOTTOM 99.8  0.93 
PORT 89.1 0.91 
TOP 94.4 0.93 
TOP 90.6 0.94 
BOTTOM 90.7 0.88 

AZIMUTHAL 
DISTORTION, 

Va1Vr-n 

1.01 
1.01 
1 .oo 
1 .oo 
0.91 
0.99 
1.01 
1.12 
0.78 

1.25 r- 

1 .o 

> 
> 

E 
\ 

.75 1. 
dl 

.50 I I I I 
.5  .6  .7  .8  .9 1 .o 

RIRS 

(c) Type C distortion. 
(d) Type D distortion. 

Figure 18 .- Concluded. 
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1 

ANNULUS  DIFFUSER 
m8 rd 

SETTLING  DUCT 
I d  -I -, b 

.6 

.4 

CP .2 

0 

-.2 

I 

- 

- 

DISTORTION - 
DEVICE TAP LOCATION 
NONE - 

0 TYPE "A" BOTTOM WALL 
CENTERBODY BOTTOM 
CENTERBODY TOP 

- TOP WALL 
I 1 a) 

-.4 1 I 

.8 

.6 

.4 

CP .2 
DISTORTION 

DEVICE TAP  LOCATION 

0 TYPE "6" BOTTOM WALL 
CENTERBODY BOTTOM 
CENTERBODY TOP 
TOP WALL -2 

I 

b) I 
I 

-.4 I 1 
-.5 0 .5 1 .o 1.5 2.0 

x/ L 

(a) Type A distortion  at r.i 90%. 
(b) Type B distortion  at h = 90%. 

Figure 19.- Effect of distortion  on longitudinal distribution of static pressure coefficient  for LUL configuration 
(see Notation  and  table 6) with = 40.8'. 
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(a) Type A distortion  at h x 90%. 

Figure 20.- Velocity distribution,  looking  upstream, near  diffuser exit plane for  azimuthally  distorted inflow to 
LUL configuration (see Notation  and table 6 )  with = 40.8". 
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(b) Type B distortion at riz = 90%. 

Figure 20.- Continued. 
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(c) Type C distortion  at h 100%. 

Figure 20.- Continued. 
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Figure 20.- Concluded. 
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Figure 21.- Effect of  distortion  on wall static pressure  coefficients near diffuser exit plane for LUL configu- 
ration (see Notation  and  table 6) with E = 40.8". 
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Figure 22.- Annulus swirl-angle distributions  for LVL configuration (see Notation and table 6 )  with = 43.2" 
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Figure 23.- Annulus velocity profiles for LVL configuration (see Notation and table 6) with $ = 43.2' 
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Figure 27.- Distribution of wall static pressure coefficients  near  diffuser exit plane for LVL configuration (see 
Notation  and  table 6 )  with C; = 43.2' and no artificial azimuthal  distortion. 
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Figure 28.- Diffuser performance  for LVL configuration (see Notation  and  table 6 )  with no artificial  azimuthal 
distortion. 
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Figure 29.- Annulus flow parameters  for LVS configuration  (see Notation and table 6) with = 43.1 and 
no artificial azimuthal distortion. 
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Figure 31.- Velocity  distribution,  looking  upstream, near  diffuser exit  plane for LVS configuration (see Nota- 
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Figure 32.- Distribution of wall static pressure coefficients near diffuser exit plane for LVS configuration (see 
Notation  and  table 6) with = 43.1' and  no artificial  azimuthal distortion. 
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Figure 33.- Diffuser performance  for LVS configuration (see Notation  and  table 6 )  with 4' = 43.1" and no 
artificial azimuthal  distortion. 
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Figure 34.- Effect of  contraction geometry on annulus flow parameters for = 40.8" and no artificial 
azimuthal  distortion. 
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(b) Static pressure recovery in settling  duct. 

Figure 35.- Effect of contraction geometry on diffuser performance  for E = 40.8" and no artificial azi- 
muthal  distortion. 
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Figure 36.- Effect of radial distortion  of inflow on annular diffuser  efficiency (taken  from fig. 2 of ref. 13). 
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Figure 37.- Variation of static pressure recovery with area fraction  at  constant swirl angles for current LUL 
configuration (see Notation  and table 7) with no artificial azimuthal  distortion (from fig. 24 of ref. 1). 
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Figure 38.- Variation of static pressure recovery with swirl angle at  constant area fraction  for LUL configura- 
tion (see Notation and  table 7) with  no artificial  azimuthal distortion. 
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(a) Average swirl angle. 

Figure 39.- Effect of distortion  on  annulus flow  parameters for LUL configuration (see Notation  and table 7) 
with = 40.8'. 
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(b) Average inflow  effective area fraction. 

Figure 39.- Concluded. 
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(a) Static pressure recovery coefficient near exit plane. 

Figure 40.- Effect of distortion  on diffuser  performance for LUL configuration (see Notation  and table 7) 
with E = 40.8’. 
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(b) Static pressure recovery in settling duct. 

Figure 40.- Concluded. 
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Figure 41 .- Comparison of simple theories  with  experimentally achieved longitudinal distribution of wall static 
pressure coefficient. 
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(a) Static pressure recovery  coefficient near exit plane. 
(b) Static pressure recovery  in settling  duct. 

Figure 42.- Effect of diffuser centerbody  length  on diffuser  performance  for LVX configurations (see Notation 
and table 7) with no artificial azimuthal  distortion. 
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